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An RLC model of the RF cavity

A

L ongitudinal

Y

dynamics

We canmodelfundamentamodeof the ~F feedbeck
cavity as a parallel RLC circuit Jovee
Z(s) = : 20Rs _
S +20S+ W, T
where 0 = ./ (2Q) is the damping ) T
time of the cavity Generator

o g %
The cavity is driven by two current l
sourcesthegeneratofklystron)andthe

beam.Totalcavity voltageis determined
by the sum current and the cavity impedance.

When the beamcurrentis small relative to the generatorcurrent- light beam
loading- the cavity voltage is mostly defined by the generator current.

High beamcurrentstartsto affectstronglythecavity voltagethuscreatinga strong
Interaction between the RF system and the bdanh-beam loading condition

Think of the interactionasof a “feedbackloop”. beamcurrentsourceis affected
by the cavity voltage, while that voltage depends on the beam current.
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What does beam loading do?

Two most significant effects of high beam loading
e Synchronous phase transients due tovendilling patterns

 Longitudinal coupled-nch instabilities duen by the fundamental impedance
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Synchronous phase transient: an example

A typl C_al Il ng fl l I | ng LER; 6/0 powered/parked cavities; Vgap =3.7891 MV; I0 = 2.3502 A; 1702by?2 fill
pattern includes a 15

sizeable gap for the abort
kicker and ion clearing

[EEN
T

Gap is an amplitude

Bunch current (mA)

. 0.5
modul ation of the beam
current 0 1 1 g | | l
0 1 2 3 4 5 6 7 8
. .
Transl ales Into Transient is 13.822|g]§e(5rsges peak—-to—peak
amplitude and phase 10 x x x x x

modul ationsof the cavity
voltage which induce a
periodic synchronous
phase transient.

Phase (deg@RF)

PEP-II LER at 2.35 A,
3.8 MV
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Effect of the synchronous phase transient

Different bunches see different RF
voltage slopes and, therefore, have
differing synchrotron tunes and bunch
lengths.

©
o
T

Mismatched gap transients between
the two rings shift the collision point
position thus degrading the luminosity.

Bunch length (mm)

(o]
T

In the LFB front-end the transient
appears as constant DC offsets of
Individual bunches. This has several
consequences: % 1 2 3 4 5 & 1 8

Time (us)

« Amplitude of the gap transient
cannot exceed the full-scal e peak-to-peak range of the phase detector used

 Largest expected gap transient amplitude sets the feedback front-end gain - need
to properly detect motion for the bunches at the extremes of the transient.

 Phase detector gain rolls off as cos(M@) where M is the detection harmonic

= |8 \Z
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What does beam loading do?

Two most significant effects of high beam loading
[1Synchronous phase transients due tosendilling patterns

 Longitudinal coupled-mnch instabilities duen by the fundamental impedance
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Fundamental impedance and coupled-bunch instabilities

The growth rate of ,,
eigenmode -1 IS
proportional to  the ™% &
differencebetweerthereal < 1000}
parts of the impedanceat
Wy — Wygy T Wg and
Wyt u Wrey u Wg

kQ
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However with increasing -
beam current the cavity
centerfrequencyis detuned § - i . o - e
below the RF frequency Eigenmode number

causing larger and larger
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Whenthedetunings comparableo therevolutionfrequencytheinstability growth
rates become too fast to control
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What does beam loading do?

Two most significant effects of high beam loading
[1Synchronous phase transients due tosendilling patterns
[1Longitudinal coupled-bnch instablilities dwen by the fundamental impedance

e An olvious question: wiis this a problem? Couldnone just hbild bigger

feedback kickrs, lmy more paver amplifiers and fix the instability problem
with feedback?
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L imits on achievable instability control

Controllable growth rates are limited by Maximum gain 0
9 : : : : :

 Maximum stableloop gain - dependson
controller design, total loop delay

(o0]
T

\l
T

« Maximum usableloop gain - gain that
providesthelargestdamping.Dependson
the same parametersas the maximum
stable @in, ut is significantly laver.

* Noisefloor atthe ADC - dependn RF-
driven noise level, front-end electronlcs -
design 32 S0 8 6 4 =2 0 2 4

Damping rate (ms %)

e Transientsensitvity - effect of injection and RF transientson longitudinal

control. The sensitity can be reduced by increasing leckoltage.

a1
T

Oscillation frequency (kHz)
(o))

For a conventional instability feedback the minimum group delay is one turn.

Experience with the low group-delay feedback channel in PEP Il (poster
MPPP007showsthata one-turndelaychannekcanreach10 ms® dampingatthe
6 kHz synchrotron frequency.

SLAC
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(g



L imits on achievable instability control

Controllable growth rates are limited by Maximum gain 2.5
9 : : : : :

 Maximum stableloop gain - dependson
controller design, total loop delay

(o0]
T

\l
T

« Maximum usableloop gain - gain that
providesthelargestdamping.Dependson
the same parametersas the maximum
stable @in, ut is significantly laver.

* Noisefloor atthe ADC - dependn RF-
driven noise level, front-end electronlcs -
design 32 S0 8 6 4 =2 0 2 4

Damping rate (ms %)

e Transientsensitvity - effect of injection and RF transientson longitudinal

control. The sensitity can be reduced by increasing leckoltage.

a1
T

Oscillation frequency (kHz)
(o))

For a conventional instability feedback the minimum group delay is one turn.

Experience with the low group-delay feedback channel in PEP Il (poster
MPPP007showsthata one-turndelaychannekcanreach10 ms® dampingatthe
6 kHz synchrotron frequency.

SLAC
£ PACO5 May 17, 2005

(g



L imits on achievable instability control

Controllable growth rates are limited by Maximum gain 5
9 : : : : :

 Maximum stableloop gain - dependson
controller design, total loop delay

(o0]
T

\l

« Maximum usableloop gain - gain that /
providesthelargestdamping.Depend®n
the same parametersas the maximum

stable @in, ut is significantly laver.

* Noisefloor atthe ADC - dependn RF-
driven noise level, front-end electronlcs -
design 32 S0 8 6 4 =2 0 2 4

Damping rate (ms %)

e Transientsensitvity - effect of injection and RF transientson longitudinal

control. The sensitity can be reduced by increasing leckoltage.

=+

a1
T

Oscillation frequency (kHz)
(o))

For a conventional instability feedback the minimum group delay is one turn.

Experience with the low group-delay feedback channel in PEP Il (poster
MPPP007showsthata one-turndelaychannekcanreach10 ms® dampingatthe
6 kHz synchrotron frequency.

SLAC
£ PACO5 May 17, 2005

(g



L imits on achievable instability control
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What does beam loading do?

Two most significant effects of high beam loading
[1Synchronous phase transients due tosendilling patterns
[1Longitudinal coupled-bnch instablilities dwen by the fundamental impedance

[1 An obvious question:why is this a problem?Couldnt onejust build bigger

feedbackkickers, buy more power amplifiersandfix the instability problem
with feedback?

What can we do to reduce these har mful effectsto manageable levels?
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Compensating the phase transient

The vector diagram shows that the beam phase o
modulation has to be compensated by a / ~~~~~~~~~
significant amplitude modulation of the
generator current

| Constant Ig

That modulation directly transforms into a

significantly increased RF power requirement! frs
What else can one do to reduce the gap b constant f
transient? ¢5 4

I V.

e |ncrease cavity stored energy

Reduce the fill pattern gap
PEP-II started with a5% abort gap, upgraded to 2.5% gap, expect to goto 1.5%

Aninteresting ideato exploreis how much of agap transient can be compensated
by only modulating the RF

A calculation made by P. Wilson in 1992 shows that a 12 degree transient in
PEP-I1 HER could be reduced to 3 degrees with phase modulation only.

SLAC
£ PACO5 May 17, 2005
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What does beam loading do?

Two most significant effects of high beam loading
[1Synchronous phase transients due tosendilling patterns
[1Longitudinal coupled-bnch instablilities dwen by the fundamental impedance

[1 An obvious question:why is this a problem?Couldnt onejust build bigger
feedbackkickers, buy more power amplifiersandfix the instability problem
with feedback?

What can we do to reduce these har mful effectsto manageable levels?
[1Synchronous phase transients

[1 Increasecavity storedenegy, reducethe gap length, possiblyuse RF phase
modulation

 Longitudinal instabilities due to the fundamental impedance of the Ry ca
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L ongitudinal coupled-bunch instabilities
Methods for fighting the longitudinal coupled-bunchinstabilities due to the
fundamental impedance of the RF cavity include
* Reduce the cdty detuning by increasing stored eger
 Minimize the number of RF gdies to reduce the total impedance
 RF feedback to reduce thevdst impedance seen by the beam
e Instability feedback to deal with the residualwtio rates

Thereis no single“magic” solution- a successfutlesignmustincludeall of the
above to suppress the instabilities

Example: SuperKEKB

* High stored engy in superconducting and ARESvdaes

« ARES caity upgrade for increased stored aqyer

 Mode -1 LLRF feedback

 Longitudinal lunch-by-lnch feedback to control the residualwgtio rates

(g

7
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PEP-I| fast impedance control loops. topology

The most important

)_

elements of the impedance I
controlling feedback 100PS  |sition rererence \__/
are shown. The direct —

feedback loop uses the |, g Cavity .

cavity vector sum signal (a & ,> P £

complex signal), scaled in _ o A

magnitude and rotated in »Qrt;

phase as an input to a -—

reference summing node. | ; .

The comb loop (a periodic | | __

IR filter) uses the direct comb foop -0

loop output via the comb c%‘ "
|

filter, scaled and rotated, as  2rectioee cuus T j v

asumming input.

Direct loop gain and phase

The overall action of this feedback topology is to keep the combined direct and
comb outputs exactly equal to the station reference - any error signal is amplified
viathe klystron and cavity path. The overall station cavity magnitude and phase are
set viathis reference.

;w PACO05 May 17, 2005



PEP-II low-level RF feedback: impedances and growth rates

Two feedback loopsareused in PEP-11to

reduce the fundamental impedance acting f
on the beam: direct and comb. 9l A *
Direct loop is a proportional feedback -° |
loop around the cavity. Closing thedirect oo o0 oo 05— 10
feedback loop reduces the effective | rreaueney ()

impedance seen by the beam and lowers | | |

the growth rates.

Loop gain (dB)

Impedance (kQ)
)

To reduce the growth rates further we add , ]
the comb filter with narrow gain pesksat | | | | R
SynChrOtron Sldebands ~1500 -1000 -500 Freque r?cy ) 500 1000 1500

Expected growth rates shown here are | ° e [o Grown
computed using alinear transfer function
model of the RF feedback system.

Growth rate (ms_l)
H
oO

©
o
o
o
o

According to the linear model the growth ~ ° | |
rate reduction istwo orders of magnitude, s e s 10
from 30t0 0.35 ms™*

- (= \Z
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PEP-II low-level RF feedback: impedances and growth rates

Direct loop is a proportional feedback = A |

loop around the cavity. Closingthedirect o =0+ 50 100 1500
feedback loop reduces the effective Frequency (k)

Impedance seen by the beam and lowers | | | |
the growth rates.

Two feedback loops are used in PEP-11 to
reduce the fundamental impedance acting
on the beam: direct and comb.

Loop gain (dB)
: = N w
o o o o

=
o
T

Impedance (kQ)
=
o
\
/
/

To reduce the growth rates further we add |
the comb filter with narrow gain pesksat | | | | ]
Synchrotron gdebands ~1500 -1000 -500 Freque r?cy ) 500 1000 1500

Expected growth rates shown here are | | [o Grown
computed using alinear transfer function
model of the RF feedback system.

According to the linear model the growth = | ° | | !
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=
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(o]
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>oOO

Growth rate (ms_l)
o

=
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PEP-II low-level RF feedback: impedances and growth rates

:
N

I\
thelbesm diretand o i w iy
Direct loop is a proportional feedback W g /
loop around the cavity. Closing the direct 21(;00 e e ey
feedback loop reduces the effective | Fewency )
impedance seen by the beam and lowers | | | |
the growth rates.

Two feedback loops are used in PEP-11 to
reduce the fundamental impedance acting
on the beam: direct and comb.

= N w
O o o o
T T

Loop gain (dB)
|

I
O

Impedance (kQ)
o

To reduce the growth rates further we add N ! ﬁ } (l) ﬂ J | ;
the comb filter with narrow gain pesksat | | AT '\ il Iy
SynChr()'[ron gdebands ~1500 ~1000 500 Freque r?cy ) 500 1000 1500

Expected growth rates shown here are | | [o Grown
computed using alinear transfer function
model of the RF feedback system.

According to the linear model the growth . | |
rate reductionis two ordersof magnitude, - - Vode ?
from 30t0 0.35 ms*
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What does beam loading do?

Two most significant effects of high beam loading
[1Synchronous phase transients due tosendilling patterns
[1Longitudinal coupled-bnch instablilities dwen by the fundamental impedance

[1 An obvious question:why is this a problem?Couldnt onejust build bigger

feedbackkickers, buy more power amplifiersandfix the instability problem
with feedback?

What can we do to reduce these har mful effectsto manageable levels?

[1Synchronous phase transients

[1 Increasecavity storedenegy, reducethe gap length, possiblyuse RF phase
modulation

[1Longitudinal instabilities due to the fundamental impedance of the Riy ca

[1 Increasecavity stored enegy, minimize the number of cavities, LLRF
feedback, coupledtmch instability feedback

("
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Minimizing the fundamental impedance

Minimize the number of cavities

Keep the detuning low
Wil gR

(*)rfIOR
V. Qe

V. Q

~
~

Wp =

To achieve low detuning

 Need lav R/ Q
* |t is desirable to operate thevdges at as high aoltage as possible
In cavity design lowR/ Q leads to laver achigable caity voltage.

Might be useful to minimize the quanti{e}«-g
C

Basedon theserequirementswe come up with a “cookbook” procedurefor
selecting ring RF parameters.

é\l@%
[>1
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Deter mining Super PEP ring parameters

Start from the achievable cavity parameters:

* Power coupled to each cavity P

« Maximum cavity voltage V.

Compute the total beam power requirements due to the synchrotron radiation,
resistive wall and HOM |osses.

Minimum number of cavities N_is determined by the ratio of the beam power to
the power delivered to the beam per cavity

Set the total RF voltage to the largest achievable value NV .

0 ew W€V 02
and w2 = TV, wegeta = G2
EoT dgC?

0' 0%

0 S EoTo

Desired bunch length and gap voltage set the momentum compaction for the ring.
For constant bunch length the ratio a/V 5 Is fixed. If we push the cavity voltage
higher the momentum compaction has to increase as well leading to a linear
Increase in the synchrotron frequency.

QA(
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Deter mining Super PEP ring parameters. assumptions

Only superconducting cavities are considered

« Conventional normal conducting cavities are unfeasible - very large wall and
HOM losses, huge detuning frequencies

« Energy storage cavities have several disadvantages relative to the
superconducting cavities

« Wall power loss - a the same generator power one will need more energy
storage cavities than superconducting ones

« Relatively low cavity voltage - requires matching low momentum compaction
which might be difficult to achieve

Synchronous phase angle is very close to 1t - quite reasonable for the large
overvoltage factors being considered

We can couple 1 MW into each cavity
Maximum cavity voltageis 1.25 MV

e A reasonable assumption for the cavities with R/IQ of 5Q, might be too
conservative for higher R/Q.

ol PACO05 May 17, 2005
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Parameter decision procedure example

LER at 3.5 GeV and 15.5 A

Synchrotron radiation loss of 15.04 MW

Resistive wall loss of 2.76 MW

HOM loss (excluding RF cavities) of 2.32 MW: total of 20.12 MW

Power delivered to the beam per cavity (loss factor of 0.36 V/pC) is 908 kW
Need 22 cavities

At 1.25 MV per cavity total gap voltage is 27.5 MV

Assuming fractional energy spredd = 8 (110~ for 0, = 1.8 mm we get
a = 3.60104
fo = 7.65kHz

é\l@%
[>1
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Cavity options under consider ation

Cavity |RIQ, Q| Ig,A | o, 10% | N¢ | Af,kHz | Phyom, KW | Py, kW
SC952 | 30 3.6 23 353.6 92 908
SC952a| 12 | 155 3.6 23 141.7 79 921
SC952b | 5 3.6 22 60.7 72 028
SC952 | 30 6.9 42 524.7 202 798
SC952a| 12 23 6.7 41 210.2 174 826
SC952b | 5 6.6 40 90.1 158 842

-
-
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Cavity options under consider ation

Cavity |RIQ, Q| Ig,A | o, 10% | N¢ | Af,kHz | Phyom, KW | Py, kW
SC952 30 3.6 23 353.6 92 908
SC952a| 12 | 155 3.6 23 141.7 79 921
SCo952b| 5 3.6 22 60.7 72 928
SC952 30 6.9 42 524.7 _ 798
SCo52a | 12 23 6.7 41 210.2 174 826
SC952b | 5 6.6 40 90.1 158 842

For high R/Q the detuning isvery large - from 2.5 to almost 4 revolution harmonics

At the other end of the spectrum low R/Q leads to detuning frequencies under one
revolution harmonic

HOM power loss ranges from 7% to 20% of the input power as a function of the
loss factor and the beam current.

\%
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Growth ratesfor different cavity designs

Here we consider three RF system configurations

o PEP-|1-like LLRF feedback (direct loop + comb filter)

o Same plus klystron linearizer for better impedance reduction
* No RF feedback for cavity SC952b (R/Q of 5)

Cavity |lg, A | Af,kHz| Ry, KQ |Mode| Rate (sat), ms? | Rate (lin), ms?
SC952 353.6 1563 -3 10.58 2.12
SC952a | 155 | 141.7 584 -3 3.95 0.79
SC952b 60.7 31.7 -1 0.43

SC952 524.7 2986 -2 30 6
SC952a | 23 210.2 1200 -3 12.05 2.41
SC952b 90.1 284 -1 5.7

From the operational experience in many storage rings we believe that rates under
5ms 1 should be controllable, higher growth rates start eroding the stability margin

- I \Z
PACO05 May 17, 2005



Cavity design comparison

Cavity |1, A | Af,kHz | Ry, kKQ |Mode| Rate (sat), ms| Rate (lin), mst
SC952 353.6 1563 -3 _ 2.12
SC952a | 155 | 141.7 584 -3 3.95 0.79
SC952b 60.7 31.7 -1 0.43

SC952 524.7 2986 -2 _ 6
SC952a| 23 | 2102 1200 -3 12.05 2.41
SC952b 90.1 284 -1 5.7

The R/Q of 30Q only works if we have linearized klystrons. Even then it is just
marginal at 1
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Cavity design comparison

Cavity | 1o, A | Af,kHz | R, kQ |Mode| Rate (sat), mst | Rate (lin), ms'?
SC952 353.6 1563 -3 10.58

SC952a| 155 | 141.7 584 -3 3.95

SC952b 60.7 31.7 -1 0.43

SC952 524.7 2986 -2 30

SC952a| 23 | 2102 1200 -3 _

SC952b 90.1 284 -1 5.7

For the R/Q of 12Q existing LLRF feedback structure would be sufficient at 15.5
A, but at 23 A we would need to linearize the klystrons.

Currently a preferred choice as a good compromise between fundamental-driven
growth rates and the aggressiveness in lowering R/Q.
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Cavity design comparison

Cavity | 1o, A | Af,kHz | R kQ | Mode| Rate (sat), ms' | Rate (lin), ms'?
SC952 353.6 1563 -3 10.58 2.12
SC952a | 155 | 141.7 584 -3 3.95 0.79
SC952b 60.7 31.7 -1 0.43

SC952 524.7 2986 -2 30 6
SC952a | 23 210.2 1200 -3 12.05 2.41
SC952b 90.1 284 -1 5.7

A

g

Since this cavity design was evaluated without feedback there are several unique
advantages to that approach

* LLRF feedback system is eliminated.
» Klystrons can be fully saturated leading to better power efficiency.
Growth rate isrelatively high at 23 A - marginal control.

e Adding LLRF feedback drops the growth rate to 3.48 ms* (0.7 ms 1)
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Summary

High current storage rings must pay careful attention to the harmful beam loading
effects

Longitudinal coupled-bunch instabilities due to the cavity fundamental impedance
to large extent define the RF system design for a highly beam loaded storage ring

Reducing the growth rates of such instabilities to a manageable level will most
likely involve a combination of several methods

 |mpedance minimization techniques
 Number of cavities

o Cavity detuning (stored energy)
 LLRF feedback

Superconducting cavities are the optimal choice for minimizing the instability
driving impedance.

Cavity stored energy increase of 4 to 10 times relative to the existing
superconducting cavitiesisrequired to produce acceptable growth rates at the high
beam currents proposed for SuperPEP.
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